Toplumdusmani.Net *
Yeni
Anasayfa > Sözlük > R > Riemann Hipotezi


Riemann Hipotezi Nedir

Riemann Hipotezi
Bilindiği gibi asal sayılar düzenli bir dağılıma sahip değiller. Alman matematikçi G.F.B. Riemann (1826 - 1866) asal sayıların dağılımlarının Riemann-Zeta adını verdiği bir fonksiyon ile çok yakından ilişkili olduğunu gözlemledi. Söz konusu olan fonksiyon şöyle:



Bu fonksiyon s'nin 1 dışındaki her kompleks sayı değeri için tanımlıdır.

Riemann Hipotezine göre bu fonksiyonun, (s) = 0 ifadesini sağlayan tüm önemsiz olmayan s değerleri, reel kısmı ½ olan düşey doğru üzerine düşer (bu doğruya kritik doğru deniyor). İlk 1 500 000 000 değer için bu doğruluk tespit edilmiş olsa da asıl istenen, söz konusu tüm değerler için doğru olduğunun ispatlanması. Bu sorunun başında 1 milyon dolar ödül konulduğunu unutmayın!


Binyılın Problemleri: 1 milyon dolar kazanmak isteyenlere!
1 milyon dolar, yani bugün yaklaşık 1,5 milyon YTL (1,5 trilyon TL) kazanmak ister misiniz? Bunun için yapmanız gereken tek şey, belirlenmiş 7 sorudan birinin doğru cevabını vermeniz lazım. Defter, kitap serbest; süre sınırlaması da yok! Cevabı ilk veren siz olun da isterseniz aradan 100 yıl geçsin. Dikkatli olun, çünkü sözkonusu sorular, yeryüzünde henüz yanıtını kimsenin bilmediği ve uzun yıllar boyu çözülmeye ısrarla direnen cinsten sorular. Aynı zamanda, cevabı bulanın da yaşam standartlarını değiştirecek sorular bunlar. İlginç olansa başarıya ulaşan insanlar, özellikle de matematikçiler, bu paranın hayalini kurdukları için değil matematik yapmayı sevdikleri ve bu alanda başarı istedikleri için kolları sıvıyorlar. Para, bu başarının sonunda gelen bir ödülden başka birşey değil, onlar için.

Cambridge Massachusetts 'de kurulan Clay Matematik Enstitüsü, 24 Mayıs 2000'de çözülmekte inatçı, matematiğin farklı branşlarındaki 7 problemini Milenyum Problemleri olarak adlandırdığını ve her bir problemi ilk çözen kişiye 1'er milyon dolar vereceğini ilan etti. Bu soruları anlamak, bir parça matematik temeli gerektiriyor. Bu durum matematiğin, hızla büyümesinin ve lise eğitiminin onu yakalamaya yetmemesinin bir sonucu olabilir. Soruları anlamak için üniversitede matematik okumak şart değil elbette, sadece Fermat'ın son teoremini, Goldbach ya da ikiz asallar kestirimini anlamaktan daha fazla çaba sarfetmek lazım. Eğer Riemann Hipotezi, P, NP'ye karşı Hodge Kestirimi, Yang-mills Kuramı, Poincare Kestirimi, Navier Stokes denklemleri, Birch ve Swinnerton-Dyer Kestirimi başlıklı sorulardan birinin yanıtını bulduysanız bu organizsonu yapan Clay Matematik Enstitüsü'ne yollamadan önce uluslarası kabul gören hakemli bir dergide yayınlamanız gerekiyor. Daha ayrıntılı bilgi için www.claymath.org

*Clay Enstitüsü'nün belirlemiş olduğu bu 7 problemin 1 tanesi, Pointcaré Kestirimi 2006'da resmi olarak teoren-m haline geldi. Petersburg'daki Steklov Enstitüsü matematikçilerinden Grişa Perelman'ın 2002'de yayınladığı ispatın doğru olduğu resmen 2006 Dünya Matematikçiler Birliği'nin Madrid'teki kongresinde açıklandı. Diğer taraftan, Navier-Stokes Denklemleri'nin de 2006 içinde çözüldüğü duruldu. Ancak değerlendirmeler devam ediyor. Şu an için 1000 yılın promlemlerinden çözüm bekleyenlerin sayısı 5 taneye düşmüş gözüküyor.


Referans: Riemann Hipotezi Nedir ?

Riemann Hipotezi | Ekleyen: | Tarih: 11-Nov-2010 10:15. | Bu yazı 6364 kez okundu..

Riemann Hipotezi ile ilgili diğer yazılar..

  • # Hipotezin Özellikleri

    Hipotezin Başlıca Özellikleri 1 - Eldeki bütün verilere uygun olmalı ve onları açıklamalıdır. 2 - Yeni gerçeklerin tahminine olanak sağlamalıdır. 3 - Probleme çözüm önermelidir. 4 - Deney ve gözlemlere açık olmalıdır. 5 - Yeni deney ve gözlemlerle denenebilir olmalıdır. Hipotezin muhtemel üç sonucu vardır: 1-doğrudan kanıtlanıp doğrudan geçerli haline gelebilir bir hipotez gözlem ve deneylerle doğrulanırsa teori değil gerçektir. 2-yeni gerçeklerle desteklenerek teori veya kanun haline gelebilir. 3-çürütülüp terkedilir. Bir Hipotez...
    Devamını Oku 2013-11-14 11:57:10
  • # Riemann Hipotezi

    Riemann Hipotezi Bilindiği gibi asal sayılar düzenli bir dağılıma sahip değiller. Alman matematikçi G.F.B. Riemann (1826 - 1866) asal sayıların dağılımlarının Riemann-Zeta adını verdiği bir fonksiyon ile çok yakından ilişkili olduğunu gözlemledi. Söz konusu olan fonksiyon şöyle: Bu fonksiyon s'nin 1 dışındaki her kompleks sayı değeri için tanımlıdır. Riemann Hipotezine göre bu fonksiyonun, (s) = 0 ifadesini sağlayan tüm önemsiz olmayan s değerleri, reel kısmı ½ olan düşey doğru üzerine düşer (bu doğruya kritik doğru deniyor). İlk ...
    Devamını Oku 2010-11-11 10:15:34
  • # Goldbach Hipotezi

    Goldbach Hipotezi (Ünlü Çözülememiş Problemler) 1742'de Goldbach, Euler'e yazdığı bir mektupta "2'den büyük her çift sayı, iki asal sayının toplamı şeklinde ifade edilebilir" önermesinin, ya doğru olduğunu ispatlamasını ya da bunu sağlamayan bir örnek göstererek yanlış olduğunu ispatlamasını istedi. Goldbach kestirimi olarak bilinen bu hipotezle asal sayılar dünyasına yeni bir heyecan geldi. Bu heyecan o gün bugündür tüm matematikseverleri sardı. Yine de henüz bir cevap bulunamadı. Ayrıca, 2'den başlayarak her çift sayıya 3 sayısı (ki bu...
    Devamını Oku 2010-11-11 10:24:08


 
Yorumlardan Yazarları Sorumludur. Yorumunuz Site Yönetimi Uygun Görürse Yayınlanır..!!..
Gönderen Başlık
zeus
Tarih: 10:18:32 11.11.2010  Güncelleme: 10:18:32 11.11.2010
Webmaster
Tarih: 02.24.2005
Nereden: antalya
Gönderiler: 1338

Cevaben: Riemann Hipotezi

Riemann hipotezi (Riemann zeta hipotezi olarak da bilinmektedir), matematik alanında ilk kez 1859 yılında Bernhard Riemann tarafından ifade edilmiş fakat günümüze kadar çözülememiş problemlerden biridir.

Bazı pozitif tamsayıların kendilerinden küçük ve 1'den büyük tamsayıların çarpımı (örn. 2, 3, 5, 7, ...) cinsinden yazılamamak gibi bir özelliği vardır. Bu tür sayılara Asal sayılar denir. Asal sayılar, hem matematik hem de uygulama alanlarında çok önemli rol oynar. Asal sayıların tüm doğal sayılar içinde dağılımı bariz bir örüntüyü takip etmemektedir ancak Alman matematikçi Riemann, asal sayıların sıklığının;

s ≠ 1 olmak koşuluyla tüm s karmaşık sayıları için


biçiminde belirtilen ve Riemann Zeta Fonksiyonu olarak bilinen fonksiyonun davranışına çok bağlı olduğunu gözlemledi. Riemann hipotezinin iddiasına göre

ζ(s) = 0
denkleminin tüm çözümleri karmaşık düzlemde bir doğru üzerinde yer almaktadır. Daha kesin bir söyleyişle, bu denklemin tüm karmaşık sayı çözümlerinin gerçel kısımlarının ½ olduğu tahmin edilmektedir. Bu iddia ilk 1.500.000.000 çözüm için sınanmıştır. Bu iddianın her çözüm için doğru olduğunun ispatlanabilmesi halinde asal sayıların dağılımı ile ilgili çok önemli bilgiler edinmek mümkün olacaktır.
Cevapla

Resimleri

Sunumları

Henüz bu yazıya eklenmiş dosya (powerpoint,pdf,word) bulunmamaktadır.

Videoları

Henüz bu yazıya eklenmiş video bulunmamaktadır.
» Ara Yoksa Sor Yanıtlayalım
Loading
» Reklamlar

Çıkış yapmak istediğine emin misin?

Evet Vazgeç